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Abstract

Building energy efficiency is crucial for identifying energy-saving potential, yet

such information was not publicly available in the past. This paper examines the

equilibrium effects of a regulation in New York City that mandates increased pub-

lic access to building energy efficiency information. I find that the effectiveness of

disclosure policies in achieving desired market outcomes hinges significantly on the

salience of the information disclosed. My findings suggest that enhancing the salience

of building energy efficiency disclosures leads to the emergence of energy efficiency

premiums and incentivizes buildings to make energy efficiency improvements. Par-

ticularly, luxury buildings exhibit more pronounced responses. I develop and esti-

mate an equilibrium model of demand for homes and building energy efficiency, as

well as buildings’ choices of energy efficiency levels. The results indicate that the in-

crease in housing prices attributable to energy efficiency improvements significantly

exceeds the savings in energy bills.

*I am grateful to Don Davis, Gautam Gowrisankaran, and David Weinstein for their guidance and sup-
port throughout this project. I thank Panle Jia Barwick, Rene Chalom, Jonathan Dingel, Tianyu Luo, Cody
Nehiba, Stijn G.Van Nieuwerburgh, Sebastian Otero, Franklin Qian, Ying Xu, Yue Yu, Howard Zhang and
participants at Columbia urban and trade colloquium and industrial organization colloquium for helpful
comments and discussion. All errors are my own.

†Columbia University, Department of Economics. Email: qz2344@columbia.edu.

https://www.dropbox.com/scl/fi/llfxmn19gfphxvq6q22bj/Draft_Disclosure.pdf?rlkey=efk8yma2ub4bveazu71cz8zzb&dl=0


1 Introduction

Improving Energy efficiency is a key strategy to achieve energy use reduction goals and

combat the challenges of climate change. In the United States, buildings are significant

energy consumers, accounting for 40% of the nation’s total energy usage, with residential

and commercial sectors contributing 21% and 18%, respectively (the U.S. Energy Infor-

mation Administration, 2021). However, until recently, information about the energy

consumption and efficiency of buildings remained largely hidden from the public eye.

Today, an increasing number of local and state governments are actively adopting poli-

cies to enhance transparency in building energy efficiency. These policies require owners

of both residential and commercial properties to consistently measure and disclose data

about their energy consumption to the public. Notably, since 2010, a total of 21 mu-

nicipalities and states across the United States have embraced these policies, specifically

targeting residential buildings (National Association of State Energy Officials, 2022).

The debate over energy benchmarking and disclosure policies is multifaceted. On one

hand, proponents argue that these policies bring about several notable benefits. They

claim that these policies may allow the housing market to better assess the value of en-

ergy efficiency by providing detailed energy consumption data. Moreover, information

regarding building energy use helps owners identify opportunities for energy efficiency

improvements. Furthermore, information interventions are considered a low-cost policy

tool to incentivize property owners to invest in energy-saving upgrades, compared to

subsidies for energy efficiency improvements. On the other hand, critics challenge the

effectiveness of these policies, questioning whether mandatory disclosures are sufficient

to significantly improve market outcomes (Winston (2008), Ho et al. (2019)).

To bridge the gap between these perspectives, this study investigates the equilib-

rium effects of increased public access to energy efficiency information on housing prices,

home-buyer decisions, and building responses. It employs a combination of causal anal-

ysis and a model of demand and supply of building energy efficiency to quantify the
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impacts of energy disclosure policies in New York City. New York City is one of the first

cities in the United States to mandate the annual measurement and public disclosure of

energy usage for large buildings. Disclosure requirements in NYC were phased in grad-

ually, leading to changing policy stringency since their introduction. The mandate for

online disclosure began in 2013. However, there was a policy change in late 2017 with

the goal of enhancing the salience of energy efficiency measures by requiring buildings to

prominently display energy efficiency ratings at their entrances. This study leverages the

2017 policy change to identify the impact of increased salience on the housing market.

To study how the policy change, which enhances the salience of energy efficiency, af-

fects the equilibrium valuation of energy efficiency in housing prices, I use New York

City’s building energy efficiency disclosure data set from 2011 to 2021. This data contain

detailed energy consumption information and the Energy Star score1 for buildings un-

der disclosure requirements. I link the data with the complete home sale records from

New York City between 2010 and 2021, which provide transaction prices, exact street

addresses, apartment specifics, and building characteristics. To analyze supply-side re-

sponses, I merge this data with a data set on building work in NYC between 2011 and

2021, which enables me to assess buildings’ investments in improving energy efficiency

in response to the change in disclosure requirements.

My empirical analysis delivers three key findings. First, the enhanced salience of

energy efficiency information disclosure leads to increases in the equilibrium prices of

building energy efficiency. Prior to the mandated disclosure, and even in the first few

years after the disclosure became available online, there were no premiums for achieving

higher energy efficiency. However, a significant shift occurred in 2017 with the introduc-

tion of the requirement to prominently display the score near the building entrance. Since

then, each one-point increase in the Energy Star score2 corresponds to a 0.14% increase in

1The Energy Star score ranges from 1 to 100 and is calculated using weather-normalized Source En-
ergy Use Intensity (EUI), adjusting for climate differences. It evaluates energy efficiency relative to similar
buildings nationwide, considering factors like size and location.

2One standard deviation of the Energy Star score is around 30 points.
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the sale price of apartment units. Second, in response to the enhanced disclosure require-

ments, building owners are increasingly investing in energy efficiency improvements to

obtain a higher Energy Star score. I find that buildings have reduced their energy use

intensities by up to 10% since 2017. Third, I document heterogeneous responses among

different types of buildings. Upscale buildings show more substantial premiums and

greater improvements compared to affordable buildings.

Motivated by the empirical findings, I develop and estimate a model of the demand

and supply of energy efficiency. On the demand side, households consider the price, the

building’s Energy Star rating, energy bills, and other building characteristics. However,

a building’s Energy Star rating may not be easily noticeable by households and thus may

fail to be taken into account in their valuation. Enhancing the salience of building energy

efficiency raises the awareness of households about the true energy efficiency level of

the building and changes their willingness to pay. On the supply side, buildings choose

their Energy Star scores to maximize profits, which are composed of capitalization gains,

savings in energy bills, and investment costs.

The model highlights two sources of inefficiencies arising from information frictions.

First, household choices can be distorted by their perceived value of a product feature,

which depends on the feature’s salience. Second, buildings may lack incentives to im-

prove their energy efficiency if the benefits of such improvements do not outweigh the

costs. Thus, enhancing the salience of building energy efficiency, if it leads to improved

market attractiveness and increased market valuation, could reduce these inefficiencies

by incentivizing investment in energy efficiency. However, this might also increase inef-

ficiencies if the price premiums for energy efficiency exceed its actual benefits.

I use the model to quantify the impact of the proposal that requires prominent dis-

closure of a building’s Energy Star score in New York City. I find that the capitalization

of building energy efficiency into the equilibrium housing prices is mainly driven by the

increase in households’ willingness to pay for a higher Energy Star score when it becomes
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more noticeable. I further benchmark the increase in housing prices with its benefits. I

find that every one-point increase in the Energy Star score results in an approximate post-

tax capital gain of $112,000 for a building after 2017. At a discount rate of 5%, the cor-

responding perpetual savings in energy bills amount to $33,000, while the upper bound

of perpetual reduced social costs is approximately $28,000. Note that the price increase

significantly exceeds the benefits from actual savings in bills and reduced social cost of

carbon.

This paper makes significant contributions to several strands of literature. First, it

aligns with a broad body of work examining the value of information provision, as demon-

strated in prior research such as Jin and Leslie (2003), Ho et al. (2019), Hastings and We-

instein (2008), Dranove and Jin (2010), Barahona et al. (2020), Bollinger et al. (2011), An-

drabi et al. (2017), and Dai and Luca (2020). Existing research has investigated the effects

of mandatory disclosure, as shown in Greenstone et al. (2006), and voluntary disclosure,

as Lewis (2011) and Guo and Zhao (2009). Information disclosure has far-reaching im-

plications for various market participants, changing sellers’ behavior, as in Jin and Leslie

(2009), and shaping consumers’ beliefs through learning, as indicated by Chernew et al.

(2008). Prior research has primarily emphasized the benefits of information disclosure,

such as how quality certification can rectify information asymmetry market failures, as

highlighted in Elfenbein et al. (2015), and how it raises consumer awareness, as discussed

in Li et al. (2016). This paper contributes by identifying how increasing the visibility and

prominence of information can shape the equilibrium effects of information disclosure. It

quantifies the causal impact of enhancing the visibility of disclosure on energy efficiency

premiums and provides evidence of the energy efficiency improvement responses on the

building side.

Second, this paper extends the literature examining the impacts of energy efficiency

regulations and contributes to the broader field of energy information studies. It speaks

to research works on how energy and environmental information affects consumers’ de-
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mand, as in Barwick et al. (2019), Houde (2018), Jessoe and Rapson (2014), and Graff Zivin

and Neidell (2009). In addition, it directly relates to the literature on the capitalization of

energy efficiency in the housing market, akin to Myers et al. (2022), Aydin et al. (2020),

Kahn and Kok (2014), Koirala et al. (2014), Fesselmeyer (2018) (Singapore), Jensen et al.

(2016) (Denmark), and Holtermans and Kok (2019) (CRE). Moreover, it adds to the studies

that examine how energy efficiency labeling induces supply-side responses, as demon-

strated in Chegut et al. (2019), Deng and Wu (2014), and Tomar (2023). This paper’s

unique contribution to this body of work lies in quantifying the equilibrium impacts of

energy efficiency policies.

Furthermore, this paper contributes to the literature on the optimal design of disclo-

sure policies, as in prior studies like Weil et al. (2006), Hui et al. (2022), and Vatter (2022).

Two of the most relevant studies include Cassidy (2023) and Ghosh et al. (2023). Cas-

sidy (2023) shows that disclosure of less observable energy-efficiency features has a much

stronger correlation with sale prices, compared to disclosure of more easily observed fea-

tures. Ghosh et al. (2023) also find that salience is the key for the disclosure to generate

energy efficiency premiums. What distinguishes this paper is that it benchmarks the in-

crease in housing prices against the actual energy savings and investment costs. The

finding that the increase in housing prices significantly exceeds the actual cost savings

provides new evidence of overreaction to enhanced salience in the real estate market. Ad-

ditionally, this paper makes an extra contribution by shedding light on the heterogeneous

responses among households and buildings to energy efficiency information disclosure

policies. This insight underscores the critical need for policymakers to account for these

distributional effects in order to strike a balance between effectiveness and equity when

formulating and implementing information disclosure programs.

The remainder of the paper is organized as follows. Section 2 describes the policy

background and the data. Section 3 presents the empirical analysis. Section 5 introduces

an empirical model and details the estimation process. Section 7 concludes.
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2 Policy Background and Data

2.1 Policy Background

Over the years, energy efficiency has emerged as a central concern in the United States,

driven by a combination of environmental, economic, and social factors. The recognition

of the environmental impact of energy consumption, particularly in terms of greenhouse

gas emissions and their contribution to climate change, has underscored the need for

more sustainable energy practices. Simultaneously, rising energy costs and the pursuit of

economic competitiveness have placed energy efficiency at the forefront of corporate and

government agendas.

New York City was among the first cities in the U.S. to tackle energy efficiency chal-

lenges and establish disclosure requirements for buildings. The aim was to enhance

transparency and accountability in building energy usage, thereby encouraging own-

ers to adopt energy-efficient practices. The focus on building energy efficiency stems

from the recognition that buildings are significant contributors to energy consumption

and greenhouse gas emissions, making the implementation of policies to monitor and

improve energy efficiency in buildings paramount.

New York City made the first move in December 2009, introducing Local Law 84

(LL84) in response to growing concerns over energy consumption and sustainability.

LL84 mandated that owners of buildings with a gross floor area exceeding 50,000 square

feet (hereafter referred to as “large buildings”) must record their energy and water con-

sumption annually, a process known as energy benchmarking. These benchmarking re-

sults were then required to be submitted to the U.S. Environmental Protection Agency

(EPA) Portfolio Manager by May 1 of the following year, with the results published online

by the NYC Department of Finance by September 1. Benchmarking for large buildings

commenced in 2010, and the disclosure requirements for multifamily properties were en-

forced in 2013. Non-compliance with the ordinance carried a penalty fine of up to $2,000
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per year, underlining the city’s commitment to driving energy efficiency improvements.

To facilitate the assessment of a building’s energy efficiency performance, the disclo-

sure information began including the Energy Star score in 2015. When the building sub-

mits its benchmarking results, the benchmarking tool known as Portfolio Manager calcu-

lates an Energy Star score for it. This calculation primarily relies on a building’s energy

use intensity (EUI) and adjusts for variations due to weather conditions. It then compares

the building’s EUI to that of similar national average buildings in terms of size, location,

number of occupants, number of PCs, and etc. Consequently, the Energy Star score serves

as a comprehensive indicator of a building’s energy efficiency, with a range of 1 to 100,

where higher scores indicate better energy performance. In September 2016, Local Law

84 was amended by Local Law 133 (LL133), reducing the benchmarking and disclosure

threshold to 25,000 square feet for mid-size buildings. Benchmarking for these buildings

started in 2017, with the first disclosure for mid-size multifamily properties taking place

in May 2018.

Despite the implementation of disclosure laws, public awareness about these mea-

sures is not as high as desired. Findings from a 2015 New York State Energy Research

and Development Authority (NYSERDA) survey show that over half of the tenants re-

main uninformed about energy efficiency policies. To address this issue, Local Law 33

was passed in December 2017, requiring buildings to prominently exhibit their energy

efficiency ratings and scores at their main entrances. This requirement was set to take ef-

fect from October 2020, as part of a strategy to enhance public engagement with building

energy efficiency.

The introduction of the amended energy efficiency policy in late 2017 gained signif-

icant attention from the media, which effectively informed the public about the impor-

tance of energy efficiency. This increase in exposure has played a crucial role in raising

public awareness and emphasizing the significance of visible Energy Star scores. With the

policy coming into full effect in late 2020, it has captured the public’s interest in energy
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efficiency and has substantially improved their awareness.

Placing the Energy Star score prominently near the building entrance carries substan-

tial significance compared to online disclosure alone. While online disclosure provides

access to important information, it often relies on individuals actively seeking out the

data. In contrast, displaying the score at a visible location near the entrance serves as

a powerful advertising and awareness tool. The prominent display of the Energy Star

score can influence the decisions of both tenants and property investors. Tenants are

more likely to choose energy-efficient buildings, as they translate into lower utility bills

and greater comfort. For investors, energy-efficient buildings can signify reduced opera-

tional costs and increased property value, further incentivizing building owners to invest

in improving energy efficiency.

2.2 Data

2.2.1 Building Energy Efficiency Disclosure Data

To capture changes in energy consumption by buildings, I collect the data set of Energy

and Water Data Disclosure from NYC OpenData. The data tracks the benchmarking re-

sults and energy efficiency ratings for buildings subject to the disclosure requirements in

NYC from 2010 to 2021. In this data set, each building is identifiable by its Borough-Block-

Lot (BBL), which allows me to link the disclosure data set to the housing transaction data

set. The data set includes various aspects of energy usage, including source Energy Use

Intensity (source EUI)3, site Energy Use Intensity (EUI)4, electricity consumption, total

carbon emissions, the use of specific fuels (e.g., Fuel No. 2, Fuel No. 4, Fuel No. 5&6),

3Source EUI (kBtu/sqft) is a metric that follows the heat and electricity used at a specific site all the way
back to their initial raw sources. It takes into consideration the energy losses that occur during the pro-
duction, transmission, and delivery of that energy to the building. Source EUI also performs a conversion,
equating primary energy sources (such as raw fuel like natural gas or fuel oil) and secondary energy sources
(like energy products such as electricity or heat) into equivalent units of raw fuel required to generate one
unit of energy consumed on-site.

4Site EUI (kBtu/sqft) represents the quantity of heat and electricity consumed by a building, as indicated
in its annual utility bills, divided by the total square footage of the building area.
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and total water consumption. Starting in 2015, the Energy Star score starts to be available

for disclosure. Appendix Figure A.1 presents a geographic distribution of these disclosed

buildings. I supplement the data set with additional historical energy prices by category

specific to New York State from the Environmental Impact Assessment (EIA). It allows

me to calculate the utility bills for the buildings in the sample.5

2.2.2 Home Sale and Deeds Data

To investigate the effects of the disclosure policy change on real estate prices, I comple-

ment the building energy use disclosure data by collecting the complete data set of hous-

ing transactions in NYC between 2010 and 2021 from the NYC Department of Finance’s

Rolling Sales files. Each transaction record identifies apartments by their apartment num-

ber and the buildings by a unique identifier known as Borough-Block-Lot (BBL). The

data set includes detailed characteristics of apartments and buildings. Apartment char-

acteristics include the transaction price, gross square footage, and date of sale. Building

characteristics include the exact street address, building age, number of residential units,

number of floors, the building’s total gross floor area, primary use, and tax class.

2.2.3 Building Job Filing Application Data

To examine the upgrades buildings are making for energy efficiency, I further compile

a data set that documents building responses to such improvements. The data is col-

lected from the Department of Building (DOB), DOB NOW - Building, and DOB NOW

- Electrical. It covers job applications for various construction, alteration, and demoli-

tion activities within NYC properties from 2010 to 2021. Each record corresponds to a

building’s application for specific work, indicating the type of work undertaken, such as

5I include natural gas, electricity, fuel oil No.2 (home heating oil), fuel oil No.4 (transition oil), and fuel
oil No.5 & No.6 (residual oil) in the calculation of energy bill expenses. As nearly half of the buildings
in the sample do not report their water usage, water usage has not been included in the energy expense
calculations. Additionally, Panel (f) in Appendix Figure A.2 indicates a 10% to 20% decrease in building
water usage over the years. This suggests that the calculated energy bills serve as a conservative estimate
of actual spending on energy and water usage.

9



boiler installations, HVAC projects, and electrical work, along with a detailed description

of the proposed construction tasks. Notably, this data set provides an uncommon chance

to observe project costs. It also provides information about the dates of filing and permit

approvals for the applications. The buildings in the data set can be identified by their BBL

codes, enabling linkage to the aforementioned data sets. 6

2.2.4 Property Valuation and Assessment Data

To assess the impact of the disclosure policy change on the assessed market value of

buildings, I additionally collect data on estimated rental income, expenses, net operat-

ing income, and market value for residential cooperative and condominium buildings in

New York City from 2010 to 2022. Each building is uniquely identifiable in the data set

using its BBL code. 7

2.2.5 Sample Construction and Descriptive Statistics

To examine the impact of energy efficiency disclosure policies on housing prices and

building improvements in energy efficiency, I construct a sample by linking the energy

disclosure data set with the transaction data set, job application data set, and property

valuation data set using the buildings’ BBL codes. I focus on buildings that began dis-

closing their Energy Star score before 2017 and had housing transactions between 2015

and 2021. The complete sample consists of 135,449 transactions across 3,351 buildings.

Summary statistics for the primary building energy disclosure in the full sample are

presented in Panel A of Table 1. The average residential building in the sample inhabits

6NYC mandates that buildings submit an application and obtain permits for construction work prior to
commencement. Before 2016, all such applications were submitted directly to the Department of Buildings
(DOB). Since 2016, however, applications for building work have been processed through DOB NOW. DOB
NOW - Building covers job applications for a wide range of work types, whereas electrical work within
buildings needs a separate application process through DOB NOW - Electrical.

7In compliance with New York State regulations, the NYC Department of Finance assesses the value of
residential cooperative and condominium buildings by referencing income and expense statements from
rental buildings that share similar characteristics, including factors such as unit count, size, age, proximity,
and number of stories.
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120 households, with an Energy Star score of 58, and produces 817 mtCO2e of CO2 every

year. On average, each building spends $387,000 on utility bills. When translated to

annual per-household energy expenditure, this equals around $3,225.

Panel B of Table 1 shows the summary statistics for the apartment variables in the full

sample. The average apartment sells at $1.02 million with 1120 square feet. A typical

building experiences 14 transactions annually.

Panel C of Table 1 provides a snapshot of building work undertaken for energy ef-

ficiency improvements. Between 2010 and 2021, the buildings in the sample have com-

pleted a total of 2,296 projects related to energy efficiency upgrades. On average, each

project incurs a cost of $174,000. The most frequently employed measures for improving

buildings’ energy efficiency include upgrades to heating, ventilation, and air conditioning

(HVAC) systems, the replacement of boilers, and converting to natural gas.

To illustrate the evolution of the Energy Star score distribution over time, I present a

binned scatter plot that compares the Energy Star scores for buildings in 2015 to those in

2021 in Figure 1a. Most of the data points lie to the right of the 45-degree line, suggesting

that many buildings have seen an increase in their Energy Star ratings over this period.

Furthermore, Figure 1b provides snapshots of the Energy Star score distributions for

buildings in 2015, 2018, and 2020. It plots the kernel density curves in corresponding

years Between 2015 and 2018, there was a decrease in density for scores ranging from 20

to 40, accompanied by an increase for scores between 40 and 60, as well as scores above

80. In the 2020 data, when compared to previous years, there is a notable decrease in the

kernel density that is predominantly below 40, along with an increase within the range of

40 to 80. This shift signals significant improvements in energy efficiency over time.
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Table 1: Summary Statistics

Mean SD Min Max Median Observations

Table A: Building Characteristics and Energy Use for Residential Buildings

Year Built 1948.006 26.95004 1800 2017 1942 40212

Building Floors 10.88247 7.943515 1 78 7 40212

Number of Residential Units 120.6004 197.5335 20 8749 82 40206

Energy Star Score 58.09234 28.67386 1 100 63 24974

Energy Bills (USD/year) 386774.4 7488519 1583.177 6.24e+08 173932 40212

Building Gross Floor Area (sqft) 142549.1 215728.8 25403 8942176 95707 40212

Electricity (kWh) 950620.5 3857437 87.3 2.06e+08 470586.9 40212

Natural Gas (kBtu) 1.42e+07 6.09e+08 0 4.95e+10 4126764 40212

No.2 Fuel Oil (kBtu) 1515043 3478367 0 1.08e+08 0 40212

No.4 Fuel Oil (kBtu) 1262413 3860027 0 1.05e+08 0 40212

No.5 & No.6 Fuel Oil (kBtu) 1663498 4140040 0 1.04e+08 0 40212

Water (kGal) 15385.19 98573.26 .7 3423222 4717.65 29774

CO2 Emissions (MTCO2e) 816.9737 1378.512 13.34 19438.24 504.2 40212

Table B: Apartment Transactions in Buildings

Sale Price (USD) 1018119 1233345 133500 1.03e+07 615000 135449

Sale Price Per SQFT(USD/sqft) 858.6841 835.5063 37.11786 57692.31 646.0975 135437

Apt. Gross Floor Area (sqft) 1119.366 504.7447 104 7768 1010.657 135437

Transactions 13.9503 18.66141 1 182 8 135449

Table C: Building Investments in Energy Efficiency Upgrade

Initial Cost 147651.6 304014.2 1000 5769987 64000 2296

Total Costs 173763.8 314512.7 3750 6418900 88300 2296

Boiler Replacement .0170649 .1324023 0 2 0 39672

Fuel Burning Work .0138889 .1176757 0 2 0 39672

Solar Panel .0017897 .1161151 0 21 0 39672

Upgrade Fuel Oil .0044868 .06721 0 2 0 39672

Gas Work .0163844 .1325833 0 3 0 39672

Heat Pump Upgrade .0010083 .0317376 0 1 0 39672

Furnance Upgrade .0000252 .0050206 0 1 0 39672

Lighting Upgrade .0037558 .0639898 0 2 0 39672

Insulation Upgrade .0002521 .0158748 0 1 0 39672

Fuel Work .0154517 .1239539 0 2 0 39672

Heating Upgrade .0193335 .1409528 0 2 0 39672

Cooling Upgrade .003655 .0624001 0 3 0 39672

Ventilation Upgrade .0033525 .059098 0 2 0 39672

Waterheating Upgrade .001462 .0388626 0 2 0 39672

HVAC Upgrade .033903 .1903498 0 3 0 39672

Notes: The sample used in calculating summary statistics consists of buildings that started to disclose their
ENERGY STAR rating before 2017. 12



Figure 1: Energy Star score Change In Response to Building Work
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Notes: The sample consists of buildings that started Energy Star score disclosure by 2015 and continued
consistently through 2021.

3 Empirical Analysis

This section presents empirical evidence of the impact of the energy efficiency disclosure

policies on home sale prices and building energy efficiency changes.

The findings reveal three key facts. First, transaction prices of residential units in

energy-efficient buildings started to increase after the policy proposing prominent disclo-

sure was passed. Second, in response to the proposed policy on prominent disclosure,

building owners take steps to improve their buildings’ energy efficiency. Third, the re-

sponses to these changes, in terms of both demand and supply, are especially significant

among upscale buildings.

3.1 Capitalization of Building Energy Efficiency into Housing Prices

3.1.1 The Effects of Building Energy Efficiency on Apartment Sale Prices

I use an event-study design to quantify the impact of the policy that proposes to enhance

the prominence of disclosure on energy efficiency premiums and estimate the following
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regression specification.

ln pijt = α + ∑
t

βtTt × ejt + ρbjt + αi + λt + γq + ϵijt (1)

where pijt denotes the transaction price for apartment unit i in building j sold in year t;

Tt are a set of time dummies for the years disclosed, ranging from 2015 to 2021; and ejt

is a measure of energy efficiency for building j in year t. In the regression, I also include

apartment fixed effects αi, calendar year fixed effects λt, and quarter-of-the-year fixed

effects γq to control for seasonality. The standard errors are clustered at the building level

to address potential correlations within the same buildings. Additionally, the regression

includes bjt, which represents the log of yearly energy bill expenses per unit in building j

for year t.

The coefficients of interest are {βt}t, which capture the effects of building energy ef-

ficiency on housing prices over time. In this regression, an observation is a home sale

transaction in year t. Since the requirement to display these scores prominently applies

to all buildings previously mandated to disclose them online, there is no control group of

buildings that disclosed their scores but are exempt from the requirement for prominent

display. Identification of the effect of the prominent display policy is thus primarily due

to time series variation in whether the policy regarding the salience of disclosure require-

ments is passed. In addition, I include apartment fixed effects to control for time-invariant

characteristics of these repeatedly sold apartments. The inclusion of the apartment fixed

effects results in a sample of 47,590 transactions for the regression, as compared to the

original full sample of 135,449 home sale transactions in buildings that started the disclo-

sure before 2017.

Figure 5 displays the results from estimating Equation (1), using the Energy Star score,

which has been available since 2015, as the measure of building energy efficiency ejt in the

regression. In the years 2015 and 2016, the coefficients are small and do not significantly
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differ from zero. However, beginning in 2017, apartments start to exhibit a premium for

energy efficiency. A one-point increase in a building’s Energy Star score leads to an in-

crease in housing prices by up to 0.18%. This suggests that enhancing the prominence

of disclosure is key to driving housing price responses. Table 2 summarizes the results

Figure 2: The Effect of Energy Star score on Housing Prices
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Notes: This figure presents the coefficients γt of the event study regression from Equation 1. The sample
comprises 47,590 transactions from the repeated sale of apartments in 3,306 buildings, which started dis-
closing their Energy Star score before 2017 when the policy proposal that required prominent displays near
building entrances was passed.

from estimating Equation 1, with the years grouped into two periods: 2015–2017 and

2018–2021. The results indicate that since 2018, a one-point increase in the Energy Star

score corresponds to a 0.14% rise in sale prices, as shown in Column (1). Additionally, I

perform two robustness checks: Column (2) replaces calendar year fixed effects with fixed

effects for building vintage groups organized by calendar year.8 In Column (3), instead

of apartment fixed effects, I include controls for the size of the sold unit, a penthouse

dummy, and building fixed effects. This addresses the concern that apartment fixed ef-

fects may limit the sample to units sold multiple times, potentially biasing the results
8The vintage groups are categorized into: pre-war buildings (constructed before 1940), post-war build-

ings (constructed between 1940 and 1980), modern buildings (constructed between 1980 and 2010 before
the introduction of the disclosure policy), and new buildings constructed post-2010. This approach offers
an alternative way to control for time-related variables, considering diverse price trends across different
building vintages.
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compared to units sold only once. The outcomes reported in Columns (2) and (3) support

the main finding, showing that a one-point increase in the Energy Star score is linked to a

0.1% increase in housing prices after 2017. In Appendix A.2.1, I show that the 2017 policy

change also results in a 0.02% increase in both the net operating income and the assessed

market value of residential condominiums or cooperatives.

The average sale price for an apartment in NYC was approximately $890k before 2017.

Since then, each one-point increase in the Energy Star score has resulted in a nearly $1246

increase in housing prices. Importantly, the coefficient on energy bills is not statistically

different from zero, suggesting that it is the energy efficiency score itself, rather than the

potential for energy cost savings, that primarily drives the energy efficiency premiums.

Table 2: The Effect of Increased Salience on the ratio of Home Sale Prices to Energy Star
Scores

(1) (2) (3)
VARIABLES Log Sale Price Log Sale Price Log Sale Price

2015-2017×ES Score 0.00003 0.00009 -0.00018
(0.00013) (0.00013) (0.00012)

2018-2021×ES Score 0.00141*** 0.00109*** 0.00105***
(0.00017) (0.00017) (0.00017)

Log Energy Bills -0.00306 -0.00365 -0.00513
(0.00874) (0.00760) (0.00717)

Apartment FE X X
Calendar Year FE X X
Calendar Quarter FE X X X
Building Vintage X Calendar Year FE X
Apartment Characteristics X
Property FE X
Observations 47,590 47,590 127,619
R-squared 0.96610 0.96709 0.82497

Notes: In the regression, I cluster the standard errors by building with Huber-White standard errors Stars
denote significance levels: 99 percent confidence level (***), 95 percent confidence level (**), and 90 percent
confidence level (*).

To further investigate the effect of disclosure on the price-energy-efficiency ratio, I

construct an additional proxy measure of building energy efficiency. This involves cal-
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culating the percentile rank of weather-normalized source Energy Use Intensities (EUI)

for buildings, with data available extending back to 2011, prior to the mandate for disclo-

sure. Figure 3 presents the estimation result of Equation 1 using the percentile rank of the

building’s weather-normalized source EUI as ejt. I normalize the coefficient of 2012 inter-

acted with the energy efficiency measure ejt to be zero. The results indicate that before

the disclosure requirement, the price-energy-efficiency ratio was nearly zero. Further-

more, the disclosure’s impact on this ratio appears to be minimal. Moreover, it reinforces

the baseline result that the premiums for energy efficiency in buildings only became sig-

nificant starting in 2017, which aligns with the increased salience and public awareness

of building energy efficiency.

In Appendix A.5, I develop a micro-founded model that rationalizes the findings that

we do not observe energy efficiency premiums up until energy efficiency becomes notably

salient.

Figure 3: The Effects of Percentile Ranks of Building Weather Normalized Source EUI on
Housing Prices
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Notes: The sample consists of all residential transactions in New York City from 2015 to 2021, within build-
ings that initiated Energy Star score disclosure before 2017, prior to the policy proposal mandating promi-
nent displays near building entrances.
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3.1.2 Heterogeneity by Building Characteristics

To investigate the heterogeneous responses in prices to the policy that enhances the salience

of energy efficiency among different property types, I categorize buildings into groups

based on quartiles of average sale prices, building size, floor rise, and vintage. The esti-

mating regression is as follows

ln pijt = α + ∑
o

∑
t

βotTt × ejt × Oj + ρbjt + αi + λot + γq + ϵijt (2)

where o indexes the type of properties; Oj represents indicator dummies for each property

type to which building j belongs; αj denotes the building fixed effects. I also include the

fixed effects for property type by calendar year λot to control for differential trends among

different property types. The rest of the variables are defined as in Equation 1.

The coefficients of interest, βot, reflect the change in housing prices for every one-point

increase in the Energy Star score, differentiated by property type and year. As depicted

in Figure 4, the findings suggest that luxury, larger, taller, and newer properties tend

to exhibit higher energy efficiency premiums. For these property types, each one-point

increase in the Energy Star score is associated with an increase in housing prices of up

to 0.21%. High-SES individuals are more likely to purchase apartments in these types of

properties. This result provides indirect evidence of a greater increase in the value placed

on energy efficiency by high-SES households in response to the policy that proposed to

raise the salience of energy efficiency.

3.2 Changes in Energy Use

To assess whether buildings responded to the policy that enhances prominence by making

energy efficiency improvements, I estimate the changes in their energy use over time
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Figure 4: Heterogeneity in Energy Efficiency Premiums by Property Type

(a) By Sale Price Quartile
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using the following event-study design:

ln yjt = α + ∑
t

βtTt + λj + ϵjt (3)

where j indexes building, and t denotes year. Tt denote calendar year fixed effects and

λj are building fixed effects. The estimated {βt}t capture the changes in the energy use

within a building over years. Identification of these coefficients relies on the time-series

variation in whether the policy proposal aimed at enhancing the salience of energy effi-

ciency was passed. The coefficient for the year 2016 is normalized to zero. The results

are displayed in Figure 5. Before 2017, the average weather-normalized Source Energy

Use Intensity (EUI)9 for a building in the sample was 649 kBtu/sqft. Since 2017, there has

been a 10% drop in the weather-normalized source EUI.

Figure 5: Changes in Building Energy Use
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Notes: The sample consists of buildings that started Energy Star score disclosure by 2015 and continued
consistently through 2021.

I further examine the heterogeneous responses of buildings to improvements in en-

ergy efficiency. Figure 6 demonstrates that buildings characterized as luxurious, taller,

9Weather-normalized Source EUI adjusts the metric of Source EUI for the impact of weather patterns on
energy use.
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and more modern initially had higher energy use intensity. However, these buildings

have shown a more substantial decrease in their weather-normalized source EUI in the

post-period. It is noteworthy that these types of properties also experienced a more sub-

stantial increase in housing prices following the implementation of the policy aimed at

enhancing the salience of energy efficiency. This suggests that high-end buildings are

more responsive to the change in the disclosure requirements.

Figure 6: Heterogeneity in Energy Efficiency Improvements by Property Type

(a) By Sale Price Quartile
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4 Empirical Model

This section introduces a model of demand and supply for building energy efficiency.

Using this model, I aim to quantify the policy’s effect on changes in willingness to pay,

consumer welfare, and energy efficiency consumption.

4.1 Demand Model

To model the choices of residential buildings by home-buying households, I adopt meth-

ods from Berry, Levinsohn and Pakes (2004) and Bayer, Ferreira and Mcmillan (2007). I

aggregate the home sale transactions to the building level. A market t is defined by the

calendar year. There is a continuum of risk-neutral home-buyers i ∈ It in year t. There

are Jt multifamily buildings in year t indexed by j ∈ Jt. The utility of purchasing an

apartment unit in building j in market t for home buyer i is:

uijt = δjt + ϵijt where δjt = −αpjt + X′
jtβ + γejt + ϕbjt + δT(t) + ξ jt (4)

where δjt denotes the average utility derived from purchasing an apartment unit in build-

ing j in market t. pjt denotes the natural logarithm of the average transaction prices for

home sales in building j in market t, and Xjt is a matrix of observable building charac-

teristics and its neighborhood characteristics in market t 10. Additionally, ejt represents

the building’s Energy Star score, and bjt denotes the annual energy bills per apartment

in building j in year t, expressed in thousands of dollars. Each building is thus charac-

terized by (pjt, Xjt, ejt, bjt). δT(t) are year fixed effects, ξ jt is an unobserved demand shock

to building j in market t, and ϵijt is the idiosyncratic preference for building j in year t

that is Extreme Value Type I distributed. The parameter α governs the households’ price

sensitivity.

10Building-level characteristics include average apartment size, building age, the square of building age,
number of floors, and building size; neighborhood characteristics include population density, the propor-
tion of the population with college degrees, median household income
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However, information about a building’s energy efficiency may not be easily notice-

able by prospective home buyers. Their buying decisions are often based on perceived

building energy efficiency, which can sometimes differ from the true energy efficiency

levels. As a consequence, a prospective home buyer may not necessarily maximize their

utility. Based on these subjective beliefs, a prospective home buyer chooses building j to

maximize their perceived utility ũijt:

max
j

ũijt = −αpjt + X′
jtβ + γẽjt + ϕbjt + δT(t) + ξ jt + ϵijt (5)

where ẽjt denotes the households perceived building energy efficiency. In this sense,

δ̃jt = −αpjt + X′
jtβ + γẽjt + ϕbjt + δT(t) + ξ jt. ejt is the true Energy Star score that building

j receives in the year. However, households may fail to recall the Energy Star scores when

such information is disclosed in a hidden place or when the awareness of the households

regarding building energy efficiency is not high. When the frequency that the prospec-

tive buyer gets exposed to such information is low, then the households may take into

account a wrong value for building energy efficiency in their expected utility function.

The disclosure policies can change ẽjt and thus change the households’ perceived utility

from building energy efficiency.

Under the assumption that ϵijt follows a Type I extreme-value distribution, the market

share of building j in year t is

sjt =
exp(δ̃jt)

1 + ∑j′ exp(δ̃j′t)
(6)

To estimate how changes in disclosure requirements have changed preferences for

building’s Energy Star score, I interact three time period dummies with the building’s
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Energy Star score ejt and estimated the following demand model:

uijt = −αpjt + X′
jtβ + ϕbjt + δT(t) + ξ jt

+ γ11{t < 2017}ejt + γ21{2017 ≤ t < 2020}ejt + γ31{t ≥ 2020}ejt

The evolution of γτ
α , where τ ∈ {1, 2, 3}, captures the variation in the average marginal

willingness to pay (MWTP) by households under different disclosure regimes.

4.1.1 Estimation

I estimate the demand model using the generalized method of moments. The estimation

moment equation is given by

E[ξ jtZjt] = 0 (7)

where ξ jt denotes the unobservable demand shocks as in Equation 4 and Zjt are the three

set of instruments that I describe below.

4.1.2 Price Instruments

To address the potential correlation between home sale price pjt and unobserved quality

of buildings ξ jt, I construct three sets of instruments.

First, I construct differentiation instruments following the approach proposed by Gandhi

and Houde (2019). The set of instruments consists of differences in the housing charac-

teristics between a building and its rival buildings. It captures how isolated a building

is relative to other buildings in the market t in the characteristic space. The distance of

building j and other building j′ in the characteristic space in the same market t can be
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measured as

z(x)
jt = ∑

j′ ̸=j
(xjt − xj′t)

2 (8)

I construct the set of instruments Z1jt = {z(x)
jt , z(x)

jt
⊗

z(x)′
jt , z(x)

jt
⊗

djt}, where xjt denotes

the physical attributes of building j 11, xjt includes building stories, building area, average

apartment size, building age., djt denotes its census block group level demographics12,

and
⊗

denotes the Kronecker product of two matrices. Then I select the top 15 most

significant instruments in the first stage, denoted as za
jt, to construct a price predictor

given by p̂jt = E[pjt|xjt, za
jt].

In the next step, I generate an additional set of instruments {z( p̂)
jt , z( p̂)

jt
⊗

z(x)
jt , z( p̂)

jt
⊗

djt}.

Then I obtain the top 15 instruments that are the most significant in the first stage as the

first set of instruments Z1jt.

The second set of instruments Z2jt consists of the number of apartment units avail-

able for sale in the same Census-Block-Group as the building j to capture the intensity of

competition that building j faces. This consists of the second set of instruments Z2jt.

The third set of instruments consists of measures of buildings’ energy efficiency and

utility bills prior to the mandate for disclosure in 2013. These predicted measures are

uncorrelated with the current demand shocks. To be specific, I calculate the percentile

ranks of the building’s weather-normalized source EUI, and the estimated energy bills in

2012 to be included in the third set of instruments Z3jt.

Then I obtain the complete set of instruments Zjt = {Z1jt, Z2jt, Z3jt}. The F-statistics

for the first-stage regression is approximately 509.

11Physical building characteristics here include average apartment sizes, building floor rise, building
gross floor area, and the age of building.

12djt includes census block group level population, median household income, and the share of popula-
tion with college degrees.
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Coefficients Notations Estimates Std. Errors

Price α -1.4044*** 0.013

1{t < 2017}Energy Star Score γ1 0.0009* 0.0006

1{2017 ≤ t < 2020}Energy Star Score γ2 0.0011*** 0.0004

1{t ≥ 2020}Energy Star Score γ2 0.0015*** 0.0005

Energy Bill (×10e3) ϕ 0.1169*** 0.0057

Building Floor Rise β1 0.028*** 0.0012

Building Gross Floor Area (×1e − 6) β2 2.653*** 0.0499

Building Age β3 -0.2585*** 0.0102

Building Age Square β4 0.0198*** 0.0008

Population Share of College Degrees β5 1.933*** 0.0535

Median Household Income β6 0.0000* 0.0000

Table 3: Demand Model Estimates of Interest

4.2 Results

In this section, I present the results for the estimated demand parameters in Table 3. The

average marginal willingness to pay (MWTP) for an Energy Star score can be calculated as

−γt
α . Note that before 2017, the MWTP for an Energy Star score was only approximately

0.06%, and it increased to approximately 0.17%. This result suggests that the MWTP for an

Energy Star score increases by 0.1% when the salience of disclosure increases. This finding

aligns with the empirical analysis, indicating that the increase in equilibrium prices for

energy efficiency due to enhanced salience is primarily driven by the increase in MWTP.

4.3 Supply Model

I assume that building owners can choose Energy Star score ej for the building to maxi-

mize their expected profits:

26



πj(ej) = NjPj(ej)(1 − τ)︸ ︷︷ ︸
Post-tax Market Value

+ Bj(ej)︸ ︷︷ ︸
Energy Savings

− Cj(ej)︸ ︷︷ ︸
Investment cost

(9)

where Nj denotes the number of residential units in building j, and Pj is the level of apart-

ment price per unit in building j in year t. τ captures the capital gain tax rate. Bj denotes

the life-time energy savings for building j in year t, and is a function of its building en-

ergy efficiency ej; Cj is the investment cost associated with improving building energy

efficiency.

Assuming a discount rate of 5%, the perpetual energy savings for building j, denoted

as Bj, can be converted to the discounted sum of annual energy savings, represented as
bj

0.05 . The derivative of the profit function for building j with respect to the Energy Star

score is given by:

∂πj

∂ej
= NjPj

∂ log(Pj)

∂ej
(1 − τ) +

bj

0.05
∂ log(bj)

∂ej
−

∂Cj

∂ej
(10)

The first component has already been calculated in Section 3.1. The value of
∂ log(Pj)

∂ej
is

close to zero before 2017, and it increases to approximately 0.14% after 2017. The average

building, denoted as j, has a total of 120 units, each with a sale price of $892,000. In New

York City, the capital gains tax rate is around 25%. Thus, a building can realize a total of

approximately $112,000 in terms of energy efficiency premiums for a one-point improve-

ment in the Energy Star score. The remaining tasks are to calculate the marginal benefit

in terms of savings in energy expenditure and the marginal cost of energy efficiency im-

provements, which are described below.

4.3.1 Energy Savings from Energy Efficiency Improvements

To quantify the private benefits of energy savings and social benefits of reduced social

costs of carbon from building energy efficiency improvement, I estimate the following
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regression:

ln yjt = α + ∑
t

βtTt × ejt + αj + λt + ϵjt (11)

where yjt is the outcomes of interest, including the annual energy bills and total CO2

emissions for building j in year t. In the regression, I control for building-specific char-

acteristics (building fixed effects, αj) and temporal trends (calendar year fixed effects, λt).

The coefficients {βt}t capture the relationship between the Energy Star scores and the two

key variables—energy bills and CO2 emissions—across different years.

The estimated {βt}t are presented in Table 4. Column 1 of this table indicates that a

one-point increase in the Energy Star score corresponds to a 0.43% reduction in energy

bills. To provide context, the annual energy bills for a building amount to approximately

$386,774.4, as shown in Panel A of Table 1. Consequently, the average savings in annual

energy bills per building are estimated to be around $1,663. Considering that each mul-

tifamily building in our sample contains an average of 120 units, a one-point increase in

the Energy Star score translates to an annual energy cost savings of about $14 per apart-

ment. Assuming a discount rate of 5%, this results in a perpetual value of approximately

$33,200 in utility savings at the building level and $280 at the apartment level for each

one-point increase in the Energy Star score.

In addition to the energy savings benefit for buildings, there is also a significant social

benefit from the reduced social cost of carbon associated with increased building energy

efficiency. Column 2 of Table 4 demonstrates that an increase of one point in the Energy

Star score results in a reduction of 0.9% in a building’s carbon dioxide (CO2) emissions.

The social cost of carbon is estimated to be in the range of $43/mtCO2e to $190/mtCO2e

annually 13. Panel A of Table 1 indicates that the average building in the sample emits

817mtCO2e. This means that an incremental one-point improvement in the Energy Star

13Under the Trump administration, the social cost of carbon was determined at around $43 per metric ton
of CO2 emissions mtCO2e. The Biden administration revised the estimate to be approximately $51/mtCO2e.
In November 2022, the Environmental Protection Agency proposed an increase to $190/mtCO2e.

28



score can lead to a yearly reduction in the social cost of carbon by anywhere from $316 to

$1, 397. When calculated with a 5% discount rate, this amounts to a continuous societal

benefit ranging from $6, 320 to $27, 940.

Table 4: The Benefits of Increases in Energy Star scores

(1) (2)
VARIABLES Log Energy Bills Log Total CO2
UNIT USD/yr mtCO2/yr

2015 × ES Score -0.00430*** -0.00871***
(0.00021) (0.00025)

2016 × ES Score -0.00486*** -0.00907***
(0.00020) (0.00023)

2017 × ES Score -0.00456*** -0.00864***
(0.00017) (0.00021)

2018 × ES Score -0.00444*** -0.00944***
(0.00016) (0.00023)

2019 × ES Score -0.00384*** -0.00942***
(0.00017) (0.00023)

2020 × ES Score -0.00373*** -0.00781***
(0.00018) (0.00024)

2021 × ES Score -0.00435*** -0.00835***
(0.00020) (0.00024)

2022 × ES Score -0.00445*** -0.00906***
(0.00022) (0.00031)

Observations 62,514 62,514
R-squared 0.90162 0.83645
Property FE X X

Notes: The sample in the regression consists of buildings that started disclosure Energy Star scores before
2017 and continued to disclose building energy efficiency annually till 2021. Stars denote significance levels:
99 percent confidence level (***), 95 percent confidence level (**), and 90 percent confidence level (*).

4.3.2 Cost of Building Energy Efficiency Improvements

In this section, I first demonstrate how building work leads to increases in Energy Star

scores and then proceed to estimate a marginal cost curve for building energy efficiency

improvements.
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In this context, I define energy efficiency-related building work14 as activities that in-

volve replacing boilers or burners, upgrading HVAC, lighting, heating, fuel, and electrical

systems, or conducting work related to natural gas.

I begin by estimating the change in Energy Star scores following jobs within build-

ings aimed at improving energy efficiency using the following dynamic difference-in-

differences (DID) design:

rjt = α + ∑
τ ̸=−1

βτDτ
t + αj + ϵjt (12)

where Dτ
t is a dummy for τ years relative to the first year in which building j undergoes

an energy-efficiency upgrade in year t; αj denotes building fixed effects. The coefficients

{βτ}τ captures the change in the Energy Star score τ years relative to the year before

the permit is received for energy efficiency upgrade work. The coefficient for the period

before the energy efficiency upgrade work, β−1, is normalized to zero.

Results of the estimated {βτ}τ from Equation 12 are presented in Panel (a) of Figure 7.

These specific types of building work lead to an increase of at least 5 points in Energy Star

scores within one year. As shown in Panel C of Table 1, the average total cost of building

work aimed at improving the Energy Star score is approximately $174,000. This suggests

that a one-point increase in Energy Star rating costs $35,000 on average for a building.

I further estimate the return on investment for building energy efficiency improve-

ment projects in terms of changes in the Energy Star score in Appendix A.3. The results

indicate that every one percent increase in investment cost leads to approximately a one-

point increase in the Energy Star score.

In addition, I present a detailed breakdown of the effects and returns of different types

of building work on Energy Star scores in Appendix A.4. Boiler replacement, HVAC

14Typical building work aimed at energy efficiency upgrades includes improving insulation, upgrading
lighting and heating, ventilation, and air conditioning (HVAC) systems, installing heat pumps, or convert-
ing to natural gas or electric power (NYSERDA Residential Statewide Baseline Study Volume 2: Multifamily
Report)
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Figure 7: Energy Star score Change In Response to Building Work
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Figure 8: The Changes in Energy Star score

upgrades, and gas work are identified as the top three most significant types of jobs for

improving building energy efficiency.

4.4 Equilibrium Effects of Enhancing the Prominence of Building En-

ergy Efficiency Disclosure

In this section, I calculate the marginal benefits and costs of energy efficiency improve-

ments under different information disclosure frameworks. As shown in Equation 10, the

key aspects of a building’s profits consist of capitalization gains in the housing market,

savings in energy bills, and investment costs. Additionally, the reduced social cost of car-

bon is also considered if the building is concerned about the social impact of improved

energy efficiency.

Capitalization Gains from Housing Price Increases. The results in Section 3.1 suggest
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that the value of
∂ log(Pj)

∂ej
is close to zero before 2017, and it increases to approximately

0.14% after 2017. The buildings can realize a total of approximately $112k in terms of

post-tax energy efficiency premiums.

Savings in Energy Bills. The relationship between the Energy Star score and energy

bills remains constant before and after the policy change aimed at improving the salience

of energy efficiency. Column 1 of Table 4 indicates that energy savings due to a one-

point increase in the Energy Star score,
∂ log(bj)

∂ej
, is equal to 0.43%, which are equal to

savings in annual energy bills per building of around $1,663. At a discount rate of 5%,

this corresponds to a perpetual value of approximately $33,200 in utility savings at the

building level for each one-point increase in the Energy Star score.

Reduced Social Cost of Carbon. Column 2 of Table 4 demonstrates that an increase

of one point in the Energy Star score results in a reduction of 0.9% in a building’s carbon

dioxide (CO2) emissions. This means that an incremental one-point improvement in the

Energy Star score can lead to a yearly reduction in the social cost of carbon by anywhere

from $316 to $1, 397. At a 5% discount rate, this amounts to a perpetual societal benefit

ranging from $6, 320 to $27, 940.

Energy Efficiency Improvement Investment Cost. Figure 7 indicates that the marginal

cost of building work to improve energy efficiency is approximately $35,000 on average

for a one-point increase in the Energy Star score.

Taking these estimates together, note that before the policy change in 2017, which en-

hanced the salience of disclosure, the investment costs of improving energy efficiency out-

weigh the benefits from savings in energy bills, undermining the incentives for buildings

to improve their energy efficiency. However, since 2017, the value of energy efficiency

began to be reflected in housing prices, creating incentives for buildings to invest in im-

proving their energy efficiency. Nevertheless, the post-tax capitalization of the Energy

Star score, represented by a substantial $112,000, greatly exceeds both the actual savings

of $33,000 in energy bills and the upper bound of the reduced social cost of $28,000. This
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result suggests that the enhanced salience of disclosure leads to an overreaction in the

housing market.

5 Conclusion

In this paper, I investigate the equilibrium impacts of building energy efficiency disclo-

sure policies on two critical aspects: energy efficiency premiums and building responses

to energy efficiency improvements. The empirical analysis in this study delivers three

main findings. First, the implementation of building energy efficiency disclosure regu-

lations becomes effective in generating energy efficiency premiums, particularly when

these regulations enhance the visibility of the disclosed information. Second, the en-

hanced salience of disclosed building energy efficiency information serves as a strong

incentive for buildings to invest in enhancing their energy efficiency. Third, upscale

buildings exhibit greater responsiveness to such policies, with more pronounced positive

outcomes in terms of energy premiums and energy efficiency improvements.

I develop and estimate an equilibrium model of supply and demand for apartment

units and energy efficiency and use it to estimate households’ willingness to pay for en-

ergy efficiency under different information disclosure regimes. The key findings from

this study indicate that the change in the equilibrium prices of building energy efficiency

are mainly driven by the increase in households’ willingness to pay when the salience

of building energy efficiency improves. In addition, the appreciation of housing prices

incentivizes building owners to make investments to improve their building energy effi-

ciency. However, the increase in housing prices due to increases in buildings’ Energy Star

score outweighs the sum of savings in energy bills and the reduced social cost of carbon.

Governments have increasingly employed information disclosure as a policy tool to

address market failures related to information frictions and enhance product quality within

markets. In the context of the housing market, a growing number of local governments
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have embraced building energy efficiency disclosure as a means to promote energy effi-

ciency, particularly in response to concerns about climate change.

This paper demonstrates the crucial role of information salience in generating energy

efficiency premiums in housing prices and encouraging building investments. However,

several questions remain for future research. First, while enhanced disclosure salience

leads to energy efficiency premiums, it raises housing prices beyond cost savings. Sec-

ond, upscale buildings respond more to information interventions, prompting considera-

tion of alternative policies for improving energy efficiency in affordable buildings. Third,

discount rates play a pivotal role in shaping households’ perceived value of long-term

benefits from energy efficiency improvements.
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A Appendix

A.1 The Geographical Distribution of Disclosed Buildings
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Figure A.1: Geographic Distribution of Disclosed Buildings
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A.2 The Changes in Building Energy Use

This section presents the change in building energy use by category. I split the buildings

into two groups based on whether the first disclosed Energy Star score for the building is

below or above 50.

I estimate how the energy use of the buildings change over time with the following

event study design:

ln yjt = α + ∑
t

βtTt × Oj + λj + ϵjt (13)

In this regression, j represents the building, and t signifies the year. Tt stands for

a time dummy for each year, while Oj indicates whether the initial Energy Star score

that building j receives is above or below 50. The coefficient on the dummy variable for

the year 2012 is normalized to zero. I control for building fixed effects λj, allowing the

estimated βtt to capture changes in the energy use within a building over the years. The

changes in various building-level energy categories, including electricity use, natural gas

consumption, fuel oil types No.2, No.4, No.5, and No.6, total water usage, CO2 emissions,

as well as weather-normalized site and source energy use intensity (EUI), are presented

in the following figure.
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Figure A.2: Changes in Building Energy Use
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A.2.1 The Impacts on Building Market Values

I investigate the effects of Energy Star score on the values of residential properties with

the following specification.

yjt = α + ∑
τ

βτTτ
t × rjt + bjt + αj + λnt + ϵjt (14)

where τ denotes the time period, rjt represents the building-level Energy Star score dis-

closed in year t; bjt denotes the logarithm of the annual energy bills for building j in year t;

αj and λnt denote the building fixed effects and census tract by calendar year fixed effects,

respectively.

Table A.1 summarizes energy efficiency premiums in market values for residential

properties. While higher Energy Star scores have no effect on market values from 2015 to

2017, a one-unit increase in Energy Star score from 2018 onward leads to a 0.023% increase

in market values. For condos or coops, starting in 2018, a one-unit increase in Energy Star

score results in a 0.019% increase in estimated gross rental income, necessitates a 0.015%

increase in expenses, leads to a 0.021% increase in net operating income, and results in a

0.021% appreciation in market value.
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Table A.1: The Capitalization of Energy Star scores on Residential Property Values

(1) (2) (3) (4) (5)
VARIABLES Log Market Value Log Rental Income Log Expense Log NOI Log Market Value

2015-2017×ES Score -0.00003 0.00001 0.00002 -0.00002 -0.00004
(0.00007) (0.00005) (0.00008) (0.00007) (0.00006)

2018-2022×ES Score 0.00023*** 0.00019*** 0.00015* 0.00021*** 0.00021***
(0.00007) (0.00006) (0.00008) (0.00007) (0.00006)

Log Energy Bill 0.00512 0.00167 0.00311 0.00011 -0.00593*
(0.00407) (0.00270) (0.00392) (0.00375) (0.00323)

Observations 57,297 40,741 40,741 40,741 40,741
R-squared 0.989142 0.99048 0.97649 0.98738 0.99350
Property FE X X X X X
Census Tract X Year FE X X X X X

Notes: Column (1) presents the impacts of Energy Star scores on the market values of all residential proper-
ties. Columns (2) to (5) present the effects of Energy Star scores on the market outcomes for all condos or
coops. In the regression, I cluster the standard errors by building with Huber-White standard errors. Stars
denote significance levels: 99 percent confidence level (***), 95 percent confidence level (**), and 90 percent
confidence level (*).
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A.3 The Returns of Building Work Costs on Energy Star Scores

I further investigate the returns on investment for building work aimed at improving

building energy efficiency with the following event study:

rjt = α + ∑
τ ̸=−1

βτDτ
t + ∑

τ ̸=−1
γτDτ

t × cj + αj + λt + ϵjt (15)

where cj represents the log of building work expenses, and λt corresponds to calendar

year fixed effects. The estimated γτ quantifies the change in Energy Star scores resulting

from a 1% increase in annual building work expenses. As depicted in Panel (b) of Figure

A.3, a 1% rise in building work expenses leads to a three-point increase in Energy Star

scores within one year after the investment.

Figure A.3: The Returns of Building Work Investment
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Notes: This figure presents the coefficients γτ of the event study regression from Equation 15. The sample
comprises energy-efficiency improvement projects between 2011 and 2021 for 1,687 buildings which started
disclosing their Energy Star score before 2017 and have transactions of apartment units between 2015 and
2021.
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A.4 The Effects of Building Work on Energy Star score by Building

Work Type

I assess how different types of building work changes Energy Star score with the event

study design

rjt = α + βτDτ
t + αj + ϵjt (16)

where Dτ
t denotes the year relative to the first year that a building j conducts energy-

efficiency upgrade work. αj denotes the building fixed effects. βτ captures the change in

the Energy Star score τ years since the first year energy efficiency upgrade building work

applications are submitted in year t. I normalize the coefficient βτ to be zero in the period

before the building work, i.e., β−1 = 0.

I further investigate the returns of investment of building work related to building

energy efficiency improvement with the following event study

rjt = α + βτDτ
t + γτDτ

t × cjt + αj + λt + ϵjt (17)

where cjt denotes the log of the building work expenses, and λt represents the calendar

year fixed effects. The estimated γτ captures the change in Energy Star score for a 1%

increase in building work expenses every year.
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Figure A.4: The Returns of Building Work by Type

44



-5
0

5
10

EN
ER

G
 S

TA
R

 S
co

re

-3 -2 -1 0 1 2 3 4 5 6
Relative Year

Pre-Work Mean = 53
No. Buildings = 1124

HVAC Upgrade

(a) HVAC Upgrade

-2
0

2
4

6
EN

ER
G

 S
TA

R
 S

co
re

-3 -2 -1 0 1 2 3 4 5 6
Relative Year

Pre-Work Mean = 53
No. Buildings = 1124

HVAC Upgrade

(b) The Returns of HVAC Upgrade

-5
0

5
10

15
EN

ER
G

 S
TA

R
 S

co
re

-3 -2 -1 0 1 2 3 4 5 6
Relative Year

Pre-Work Mean = 54
No. Buildings = 770

Heating Upgrade

(c) Heating Upgrade

-4
-2

0
2

4
6

EN
ER

G
 S

TA
R

 S
co

re

-3 -2 -1 0 1 2 3 4 5 6
Relative Year

Pre-Work Mean = 54
No. Buildings = 770

Heating Upgrade

(d) The Returns of Heating Upgrade

-2
0

-1
0

0
10

20
EN

ER
G

 S
TA

R
 S

co
re

-3 -2 -1 0 1 2 3 4 5 6
Relative Year

Pre-Work Mean = 45
No. Buildings = 148

Cooling Upgrade

(e) Cooling Upgrade

-1
0

0
10

EN
ER

G
 S

TA
R

 S
co

re

-3 -2 -1 0 1 2 3 4 5 6
Relative Year

Pre-Work Mean = 45
No. Buildings = 148

Cooling Upgrade

(f) The Returns of Cooling Upgrade

-1
0

-5
0

5
10

15
EN

ER
G

 S
TA

R
 S

co
re

-3 -2 -1 0 1 2 3 4 5 6
Relative Year

Pre-Work Mean = 58
No. Buildings = 127

Ventilation Upgrade

(g) Ventilation Upgrade

-1
0

-5
0

5
10

EN
ER

G
 S

TA
R

 S
co

re

-3 -2 -1 0 1 2 3 4 5 6
Relative Year

Pre-Work Mean = 58
No. Buildings = 127

Ventilation Upgrade

(h) The Returns of Ventilation Upgrade

Figure A.5: The Returns of Building Work by Type (Continued)
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A.5 Stylized Model

In this subsection, I describe a stylized model of the decision-making process. The model

provides a framework that integrates both belief updating and attention. The aim of the

model is to help explain the changes in prices of energy efficiency over the years.

There exists a representative, risk-neutral decision maker (hereafter referred to as DM)

who chooses buildings based on their energy efficiency, denoted as q, and pays a price p.

A building is characterized by its energy efficiency and its price, i.e., (q, p). The intrinsic

value of the building to the DM is formalized as:

V = q − p (18)

However, due to information frictions, the true energy efficiency of the building is not

fully observable to the DM. Instead, the DM is able to observe signals about the building’s

energy efficiency. The information set consists of a collection of signals that the DM has

received and processed. Based on the available information set, the DM solves a de facto

value maximization problem:

max E[V|S] = E[q|S]− p (19)

An outside option exists where (p0, q0) = (0, 0). The DM’s choice set comprises C =

{(p, q), (0, 0)}. The willingness to pay (WTP) for the building’s energy efficiency q can

then be expressed as:

WTP(q|(p, q)) = sup p

s.t. E[V(p, q)|S] ≥ E[V(0, 0)|S]

The expected value of the outside option is normalized to be zero, E[V(0, 0)|S] = 0.

Therefore, the WTP is captured by the expected quality conditional on the information
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set, i.e., WTP(q|(p, q)) = E[q|S].

Assume that the energy efficiency for building j is represented by a binary indicator

ej ∈ {H, L}, which denotes whether the building’s energy efficiency level is high (H)

or low (L). There are four periods, denoted as t ∈ {0, 1, 2, 3}. In each period, the DM

observes a signal sjt ∈ [1, 100] that provides information about the building’s energy

efficiency. A signal sjt closer to 100 is more indicative of high energy efficiency H, while a

signal closer to 1 is more indicative of low energy efficiency L.

Given the signal, the Bayesian DM forms beliefs about the energy efficiency, q, of a

building. We denote the DM’s belief about the inherent energy efficiency of building j at

time t as πt. Here, π0 denotes the DM’s prior belief about the building’s energy efficiency.

Assume that the prior beliefs π0 follow the beta family of distributions, specifically π0 ∼

β(x, x), which is a symmetric distribution. The beta distribution naturally arises as a

continuous probability distribution in this context. Subsequently, the DM evaluates the

building based on the expected energy efficiency conditional on their readily available

information set and the price.

Two primary information frictions cause the expected building quality, conditional

on one’s information set, to deviate from rational expectations. First, signals conveying

building energy efficiency may be bundled with noises. Second, the DM might not consis-

tently recall these signals, leading to their omission during considerations. The progres-

sion of energy efficiency policies over the years represents a dual process: diminishing

noise interference and enhancing awareness.

The DM’s attention to the signal plays a crucial role in influencing the DM’s decision-

making process. Assume that in each period, a signal st has a corresponding probability

rt of being recalled by the DM and thus taken into consideration during the process of

belief updating. The recall probability rt has significant real-world implications. It can be

thought of as an increasing function of the intensity of signal exposure: the more often

the DM is exposed to the signal, the more likely it is that the DM will recall the signals ob-
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served. To put this into context, before 2017, households could only get exposed to build-

ing Energy Star scores by navigating lengthy reports online. Since this could be viewed

as a daunting task, the frequency at which the DM was exposed to such information was

low. This translates to a very low recall probability in such a period. The passage of a

policy at the end of 2017, which proposed increasing the visual prominence of building

energy efficiency, sparked intense discussions and attracted media attention. The sub-

stantial media coverage provided the DM with a second channel of exposure to building

energy information, simultaneously improving the DM’s recall probability of the build-

ing’s energy efficiency, even though the prominence requirements were not yet in place.

Finally, after the policy was implemented in 2020, the DM gained a third channel of ex-

posure to the building’s energy efficiency. This triple exposure significantly increased the

recall probability of the current signal.

In subsequent periods, the upadted beliefs about the energy efficiency of building j

follow the new beta distributions:

πt ∼ β(x + ∑
t

rtst, x + 100 ∑
t

rt − ∑
t

rtst)

The mean of the distribution of beliefs in period 3 is equal to the expected value build-

ing energy efficiency conditional on the signals S = {s1, s2, s3} observed in the past:

E[π3] = E[q|S] = x + r1s1 + r2s2 + r3s3

2x + 100(r1 + r2 + r3)
(20)

In the section above, I abstracted from the noise associated with the signals the Deci-

sion Maker (DM) observes every period. Such noise in the signal might arise for various

reasons, one being that the observable building energy efficiency measure is less inter-

pretable. This scenario can be visualized as a situation where only itemized energy usage

is disclosed, making it challenging for households to transform the disclosed data into

a precise measure of building energy efficiency. Now, assume that the signal related to
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building energy efficiency observed by the DM closely aligns with the true energy effi-

ciency but has noise added: st = s + et. I postulate that the noise term et is normally

distributed with a mean of zero and a standard deviation of σt, denoted as et ∼ N (0, σ2
t ).

When the signals are noisy, the mean of the belief distribution in period 2 corresponds

to the expected value of building energy efficiency conditional on previously observed

signals S = {s1, s2}:

E[π3] = E[q|Se] =
x + r1se

1 + r2se
2 + r3se

3
2x + 100(r1 + r2 + r3)

=
x + r1(s1 + e1) + r2(s2 + e2) + r3(s3 + e3)

2x + 100(r1 + r2 + r3)

Figure A.6 displays simulated outcomes for the expected quality of buildings based

on noisy signals, denoted as E[q|Se], in the third period. These simulations visualize how

the marginal willingness to pay (WTP) changes with the most recent signal of quality,

s3, conditional on earlier signals. A comparison between panels (a) and (d) illustrates

that both reduced signal noise and increased awareness increase the marginal WTP for

high-quality signals.

In Panel (a), σ1 = 40, σ2 = 20, and σ3 = 4. The choice of σ1 mirrors the period from

2010 to 2013. During this time, the DM had limited public access to building energy

data and had to rely on unverified sources. Additionally, available data covered only a

subset of buildings, preventing a broad comparison and understanding of building en-

ergy efficiency. This limitation prevented the DM from a comprehensive comparison and

understanding of energy efficiency across the building stock. The choice of σ2 here is

to emulate the period from 2013 to 2015, when online disclosures with detailed energy

usage data were introduced, but there was no clear metric for energy efficiency. This de-

velopment facilitated comparisons yet required DMs to interpret raw data, resulting in

moderate signal noise. Subsequently, in the 2015-2017 window, the integration of Energy

Star scores into disclosures significantly diminished signal noise. Thus I further reduce

the value of σ3.
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In Panel (b), signal variances are further reduced to σ1 = 20, σ2 = 4, and σ3 = 4, with

low recall probabilities set at r1 = 0.1, r2 = 0.2, and r3 = 0.2, representing the period of

reduced signal noise coupled with lower recall probabilities. Notably, as signals become

clearer, the DM is less likely to have a diminished WTP for buildings with signals of better

quality compared to inferior ones.

Transitioning from Panel (c) to Panel (d), I shift the focus to examine the effect of

higher recall probabilities—indicative of increased public awareness—on the DM’s WTP

for the quality in the equilibrium. In these scenarios, the noise variances are delibrately

chosen to be zero. Panel (c) sets recall probabilities at r1 = 0.5, r2 = 0.5, and r3 = 1,

while Panel (d) sets them at 1 for all periods. Comparing these two panels reveals that

increasing public awareness of the signal correlates with an increased WTP. However,

in scenarios where there is no further enhancement in public awareness, despite high-

quality signals still commanding a higher valuation and WTP, the magnitude of WTP for

quality is marginally smaller compared to periods of growing public awareness.
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(a) Large Noise, Low Recall Probability:
(2010-2013)

(b) Reduced Noise, Low Recall Probability:
(2013-2015-2017)

(c) Minimal Noise, Increased Recall Probability:
(2017-2010)

(d) Minimal Noise, High Recall Probability:
(2021 onwards)

Figure A.6: Expected Value of Quality Conditional on Signals
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